
Lagrangians of stochastic mechanics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 3497

(http://iopscience.iop.org/0305-4470/23/15/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 08:41

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 3497-3510. Printed in the U K  

Lagrangians of stochastic mechanics 

M T Jaekel 
Laboratoire de Physique Theorique de I’Ecole Normale Superieuret, 24, rue Lhomond, 
75231 Paris Cedex 05, France 

Received 7 February 1990 

Abstract. The stochastic variational principle which applies to diffusions and extremises 
the mean value of the classical action is generalised to include non-Markovian diffusions. 
A whole family of different stochastic actions, labelled by a time-dependent parameter, is 
obtained and all of them are shown to lead to the Schrodinger equation. As a result, the 
well known degeneracy of the class of stochastic processes which correspond to a single 
quantum state is recovered. It is also related to an arbitrariness in the choice of the noise 
which can occur in two places: in the definition of the noise, through the time-dependent 
parameter, and in the auto-correlations of the noise which, although constant during the 
variational method, remain undetermined. The whole scheme is given a covariant form. 

1. Introduction 

Stochastic mechanics is a representation of quantum mechanics which, in contrast 
with the operator representation, preserves the ordinary commuting character of the 
degrees of freedom and makes the concept of trajectory play a central role (Nelson 
1985). The indeterministic character of quantum mechanics is then deeply rooted in 
the sample paths: although continuous, these are no longer differentiable and are well 
described by stochastic processes. Time derivatives can still be defined, but in the 
mean, allowing one to obtain accelerations and to formulate a stochastic version of 
the Newton law. The latter has been shown to be equivalent to the Schrodinger equation, 
when a combination of the probability density and of the velocity field is used as the 
wavefunction, so that equivalence with the operator representation of quantum 
mechanics is ensured (Nelson 1966). However, stochasticity allows several proper 
accelerations to exist and the equivalence holds whenever the stochastic acceleration 
is correctly related to the diffusion coefficient of the process. 

It was remarked early on that the stochastic representation suffers from an 
ambiguity: it does not assign a unique process, but infinitely many equivalent ones to 
the same quantum state. This degeneracy leads to problems of physical importance, 
if one is to interpret the stochastic processes as real physical ones and not as mere 
mathematical objects (Davidson 1979). In particular, the diffusion coefficient, which 
describes the mean ‘width’ of the trajectories, is not determined but can be scaled by 
an arbitrary parameter, provided the stochastic acceleration is chosen accordingly. 
Surely, the early noticed connection between diffusions and Riemannian manifolds 
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(It8 1975) allows one to exploit symmetry requirements, like covariance under (time- 
dependent) changes of coordinates, and to relate the diffusion coefficients to the metrics 
of the underlying Riemannian manifold (Dohrn and Guerra 1978, Nelson 1985). But 
it still fails to fix the scaling parameter, which can even have an arbitrary time 
dependence (Jaekel 1988). On another hand, although for technical convenience the 
process is often considered to be Markovian, there is at present no physical justification 
for such a hypothesis. 

Nonetheless, one can still hope to raise at least the scaling ambiguity, if one manages 
to justify a unique choice for the stochastic acceleration, or equivalently, for the 
stochastic action from which the Schrodinger equation can be derived. Indeed, among 
the various stochastic variational principles developed up to now (Yasue 1981, Guerra 
and Morato 1983, Morato 1985, Misawa and Yasue 1987), the scheme introduced by 
Guerra and Morato seems to fulfil such a hope. In the latter, one obtains the stochastic 
action by computing the mean value of the classical action over the trajectories of a 
Markovian diffusion. This direct identification with the classical action thus leads to 
a unique stochastic action, which, when extremised, can be seen to provide the stochastic 
acceleration with the scaling parameter set equal to 1. 

This paper has two main aims. Firstly, to give a generalisation of Guerra and 
Morato’s scheme for non-Markovian diffusions, which preserves its main feature, i.e. 
its direct (computable) connection with the classical action. This will result, in par- 
ticular, in the restoration of the scaling ambiguity, ruining the hope just expressed, 
but will also exhibit its relation to the Markov hypothesis. Secondly, to put into evidence 
a deep connection between the properties of the noise, which characterise the diffusion 
process, and the constraints which define the variational principle. This will also 
provide a new insight into the nature of the degeneracy of the processes corresponding 
to a single quantum state. The extension to non-Markovian diffusion will produce a 
further result: the scaling ambiguity will be related to the definition of the noise, and 
traced back to a choice in its time prescription which, although different in nature, is 
very similar to the convention which is known to exist in stochastic calculus (in 
particular, between It8 and Stratonovich calculus (Schuss 1980)). A covariant formula- 
tion of these properties, respecting the underlying geometry, will also be given. In 
particular, the action will be identified with an invariant length for the trajectories, 
obtained with the use of a generalised stochastic parallel transport. 

For the sake of clarity, there will be two main parts, which will follow the two 
conceptual steps of Guerra and Morato’s scheme. A first one will be devoted to an 
extension of the derivation of the Schrodinger equation from a variational principle, 
that will apply to non-Markovian diffusion and to a family of stochastic actions. The 
latter will then be obtained in the next part, by computing the mean value of the 
classical action over the trajectories of the diffusions, or more precisely, of a proper 
extension of the classical action which will take into account the corrections due to 
the necessary It8 terms (MacLaughlin and Schulman 1971). 

2. The stochastic variational principle 

The direct connection with the classical action provides one reason for dealing prefer- 
ably with diffusion processes, and thus for using the variational method developed by 
Guerra and Morato (1983), (which has also been extended to pathwise variations 
(Morato 1985, Marra 1987). A different characterisation of the stochastic processes, 
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as with semi-martingales, would call for another variational approach, such as that 
developed by Yasue (1981), Misawa and Yasue (1987). Another reason is the close 
relationship between diffusions and Riemannian manifolds (It8 1975, Nelson 1985), 
which naturally endows them with intrinsic geometrical properties, allowing one to 
develop a manifestly covariant formulation. In this context, the action will also be 
identified with an invariant length for the trajectories. 

We shall begin by recalling a few definitions, which are extensively used in the 
stochastic representation. 

2.1. Diffusion processes 

Diffusions are defined as collections of time-indexed random variables: x:, i = 1 . . . N, 
with the following properties: 

dx)  = x:+dr - X: 

(dx:), = b ' ( x , )  d t+o(d t )  

(dx: dx:), =2v"(xI)  d t+o(d t )  

(dx? dx) . . . dx)),  = o(dt) n>2 .  

( ), will denote, in the following, the expectation value of any random variables defined 
on the same probability space, taken conditionally in the values xi ,  at time t ,  for the 
variables XI. The probability density will satisfy in particular the Fokker-Planck 
equation: 

d ,p + v ( b ' p  ) - v v, ( v "p ) = 0 V ,  = a/ax'. (2) 

Let us note that the drift and diffusion fields b and v, as defined in ( l ) ,  together with 
the probability density p, are not sufficient to specify the diffusion process: only if one 
further restricts the diffusion process to be Markovian, is the latter uniquely determined. 
Quite generally, one can define a noise w through the following stochastic differential 
equation, which is the rigorous form of the Langevin equation, and the basis of It8 
calculus (Schuss 1980): 

dx:= b ' ( x , )  dt+dw:+o(dt )  (3) 
or else: 

r to t ro b'(x7) ds. x '  - X I  = w' - wI + I.l 
Thus, the diffusion is specified by the drift field b and the noise w. The latter is only 
subject to the restrictions: 

(dw:), = o(dt )  (dw: dw:), =2v"(x,) d t+o(d t )  

and can still span a large variety of different diffusions. Restricting the noise to 
martingales, i.e. 

(dw;)vsI = 0 

is equivalent to restricting to Markovian diffusion processes, but as will be seen, is by 
no means necessary. 
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The diffusive nature (1) allows one to define time derivatives in the mean: 

so that in particular, for any function of the variables xi :  
D = a,  + b'V, + v"V,V,  

D* =a,  + b * T ,  - vtJV,V,  

with 

Dx'  = b' D*x' = b*' b"' = b' - 2VJ( ~ " p ) / p .  

In fact, these time derivatives generate a whole affine set, which reflects the 
covariance of the diffusion process (1) under time-dependent changes of variables: 

l S A  1 - A  
2 2 

D,=-D+-D* 

when applied to a function of x:: 

D, = a ,  + biV, +Av 'VIV ,  

with 

l + A  1 - A  
2 2 

61 = D,x' = - b' +- b"' 

so that 

Indeed, these time derivatives correspond to different ways of taking the conditional 
expectation in the mean time derivative: 

The arbitrary time-dependent parameter A thus reflects a general infinitesimal arbitrari- 
ness in time specification. This then allows the definition of different A-noises w, 
according to 

X ~ - X : , , =  w i r -  wire+ 

dx :=dwi ,+  b;(x,) ds. 

For any choice of A, the diffusion process is determined by the corresponding drift b, 
and noise w,, where the latter is only constrained by 

(dhW;l), = o(dt)  (dwi, dw',,), = 2 v ?  dt+o(dt ) .  
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One will have noted that A varies between 1 and -1, and that different differentials 
dA correspond to different conventions in stochastic calculus, where A = 1 is the It6 
convention and A = O  the Stratonovich one (Schuss 1980). However, it must be 
emphasised that the use made in the conditional expectation values, and consequently 
in the definition of the noise ( 5 ) ,  is a new feature, to be distinguished from the use 
in the definition of stochastic integrals. The difference will appear more clearly in 
section 3. 

2.2. Variational principle 

A very clear and detailed description of Guerra and Morato's scheme has been given 
by Nelson (1985), so that its generalisation will be given here in a concise form, with 
comments on the new features only. 

The diffusion process is assumed to describe a dynamical system whose cl~ssical 
Lagrangian is known: 

dx'  dx' dx'  
d t  d t  d t  

T=$m,- -+ai-- v. 
Accordingly, the following actions are defined for any diffusion process: 

with the stochastic Lagrangians: 

These stochastic actions will be obtained from ( 6 )  in section 3. 
A is an arbitrary time-dependent parameter (Guerra and Morato take A = l ) ,  which 

will label the whole variational method. For covariance requirements, the following 
quantities have been introduced: 

gi A -  - ),; + A v j k r i ,  .h 

(rj, is the Christoffel symbol associated with the metrics V ,  and Di the corresponding 
covariant derivative). From (7) and (8) it is clear that the stochastic action is totally 
determined by the probability density p, the drift field b; and the diffusion field v. The 
latter will furthermore be chosen as 

i l  

r j ' k  - (vjvk/ + V k V j /  - Vfvjk) 2 
DiA' = V 'A' + rj, A 

h 
2A 

=- (9) 

This will appear to be the most general choice compatible with the Schrodinger 
equation. Let us just remark for the moment, that for any choice of A, the stochastic 
action is easily seen to transform like a scalar function, under time-dependent changes 
of variables (as 6; and -a transform like velocities, and V+ia i a i  like scalar (Jaekel 
1988)). 

The variational principle can now be stated in the following way: v does not vary, 
but is fixed once and for all (and so also is A ) ;  6,, and p are varied, but with their 
values at the endpoints kept fixed: 

= 66A,' = 0 sp, = sp , ,  = 0 S V "  = 0. (10) 



3502 M T Jaekel 

The critical diffusions will be those for which the stochastic actions are stationary, i.e. 
do not vary at first order in Sp and SgA: 

89, = o( S p ) .  

Writing these conditions will give differential equations characterising the critical 
diffusions. 

For that purpose, let us introduce the following function S(f, x), defined as a 
solution of 

D,S = ZA 
that is: 

h - -  h 
4A 2 

a$+ g~D,S+Av"D,D,S =- vlJbL b$ + a,g\ +- D,(gl, + a ' )  - V. (11) 

It might be worth noticing that the only difference with Guerra and Morato's scheme, 
which will allow for non-Markovian diffusions, appears here: in their case, S is defined 
as: 

while here only (11) is used. For Markovian diffusions, and A = 1 only, (11) can be 
seen to result from (11'). 

It is then easy to see that according to (4), S provides the action through 

9A = (s I , )  - 
so that the variation can be rewritten 

89A =(8s,,)-(8s,) 

(where because of ( lo) ,  ( ) is the expectation value on the unvaried process). One then 
easily derives successively, from (4): 

(from (8) and (4)) 
= (I,' [mug( + ai -- h V i  In p' -Vis 

2 
(where p' = p l ~ 1 " ~  and IvI = /det v u l )  giving the following characterisation of critical 
processes: 

b'+ b"' g; + gLA 
Vis = m u d  + ai =-=- 

2 2 ,  
Then (11) and (12) can be rewritten 

the gradient of which is 
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also giving the characterisation of the critical diffusions in the form of a stochastic 
Newton law. Indeed, one can recall the classical Newton law resulting from the classical 
Lagrangian (6) : 

DAi dAi dx.’ ---_ - rfS.Ak--. D m,dx’ dx’ 
d t  d t  d t  d t  ( d t  ) + (Viai - v i a j )  -+ viv- a,ai = 0 

On another hand, when coupled to the Fokker-Planck equation ( 2 ) ,  equation (12) is 
easily seen to be equivalent to the Schrodinger equation associated with the classical 
Lagrangian (6): 

ih(d,-&3, ln/ml)9={m”(ihD,+ai)(ihDj+a,)9+ 7f9 
for 

9 = ~ ” * ) m 1 ’ ’ ~  exp(iS/ h ) .  

Let us restate the minor differences introduced in the general variational principle 
for arbitrary A: in the conditions of variation, the two end points are kept fixed; 
although in the Markovian case, the function S can be obtained as a conditional 
expectation value of the stochastic action taken at initial time, this property is not 
really needed in the derivation, as a solution of equation (1 1) appears to be sufficient. 
Finally, one can remark that for any A the stochastic action YA identifies with the 
usual Schrodinger action of quantum mechanics (up to terms depending on the 
endpoints only). 

3. Classical and stochastic Lagrangians 

We shall now recover a crucial feature of Guerra and Morato’s scheme, i.e. that the 
Lagrangians introduced in (8) are not ad hoc assumptions, but can be computed from 
the classical Lagrangian (6). Before that, let us make a few comments to exhibit the 
remarkable character of this correspondence. 

3.1. Correspondence principles 

As in the case of the operator representation of quantum mechanics, the stochastic 
Lagrangians (8) for a particular system could be determined by a kind of correspon- 
dence principle, from the classical Lagrangian (6). Indeed, the stochastic action can 
be rewritten as 

which could be obtained from the classical action by making the following substitutions: 

But, such a correspondence would still need to further justify the h corrections in the 
square of the velocity. More importantly, it would also remain ‘global’, as the velocity 
v’(x) at point x requires the knowledge of the whole process to be evaluated, so that 
the Lagrangian could not be defined for each trajectory in a universal way, i.e. with 
no dependence on the measure defining the process. These are precisely the new 
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properties brought by the scheme, and which one would like to preserve. In the case 
of Markovian diffusions, Guerra and Morato (1983), (or Nelson 1985), have computed 
the mean value of classical Lagrangian (6), with dx‘ ld t  taken to be the direct time 
derivative of the stochastic variable itself, or a covariant version of it taking into 
account the It8 terms: 

dx‘ + dx: = dx: +frjk dx: dx: +A(V,rjk + rimr$) dx: dxf  dx‘, . (13) 

Of course, for diffusions the mean value of the classical action is generically infinite, 
but it can be shown in this case that the infinite part depends on the diffusion coefficient 
only and does not contribute to the variation. One can thus forget this infinite part 
(imagine a kind of renormalisation that will not depend on the drift field) and one is 
left with expression (8) where A has been set equal to 1. The classical action thus 
defines a universal function, a length, on the sample paths or trajectories. This property 
(for Markovian diffusions) suggests that there should be a way to extend the classical 
Lagrangian into a unique stochastic one: by evaluating the former on all the sample 
paths and then taking the mean value over the process. 

This uniqueness contrasts with the usual situation for path integrals, where 
ambiguities related to the different conventions of stochastic calculus (also related to 
different order prescriptions for operators) are known to affect the choice of a 
Lagrangian (Langouche et a1 1979). But one can easily see that the stochastic action 
(7 ) ,  which depends on the total mean value, will not be changed by different time 
prescriptions; or else, different substitutions, with d,x replacing dx in (6) and (13), 
will all lead, for Markovian diffusions, to the same result, which is the stochastic action 
obtained from (8) will A set equal to 1 (or equivalently-1). (Anticipating the result of 
the next subsection, this already illustrates how the choice of a particular noise differs 
in nature from the choice of a convention in stochastic calculus.) Thus, one is led to 
think that only one stochastic Lagrangian can result from an intrinsic correspondence 
with classical dynamics. This in turn implies a unique Newton-Nelson law, and the 
uniqueness of the diffusion coefficient of the process one can associate with a quantum 
state. 

But, as we shall demonstrate, this uniqueness is in fact the result of the implicit 
conditions on the noise correlations, which are imposed with the Markov hypothesis. 
Indeed, we shall evaluate the mean value of the classical action for general non- 
Markovian diffusions and obtain all the stochastic Lagrangians of (8), thus showing 
that the same intrinsic correspondence, using the classical action as a length for the 
sample paths, exists for general diffusions and in a transparent way with respect to 
the time-dependent parameter A. 

First we shall need a slightly improved classical action: the diffusive nature of the 
process (1) means that the trajectories have generic dx, of order dt1’2, instead of d t  
in the classical limit. So that expressions with additional terms of the form 

dx’ dxJ dxk  dx’ dx’ dxk  dx’ 
dx‘ dxJ 

d t  d t  

known as It8 terms (MacLaughlin and Schulman 1971), will all have the same classical 
limit. One can see that such terms must in fact be present, in order to preserve the 
covariant scalar nature of the Lagrangian under (time-dependent) changes of coordin- 
ates, where dx, is of order dt’”. In fact, from the coefficients of the classical Lagrangian 
(m, a, 7 )  and their covariance properties, these It6 terms are determined up to a usual 
R d t  term, where R is the curvature of the metrics m. One is led to the covariant length 
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(de Witt 1957) 

ds  I = i  zm,- +a ,  ax:+$(d,m, + D,a, + D,a,) ax: ax: - V dt  +o(dt) .  d t  (14) 
ax:ax; 

For the sake of clarity, and because of the more complex expressions introduced 
by inhomogeneous diffusion coefficients, the evaluation of the mean length will be 
performed in two steps. First, it will be derived in the case of constant diffusion 
coefficient, to point up the role of the noise. Then, it will easily be generalised to 
arbitrary diffusion coefficients (or curved space), thus providing the required covariant 
description. 

3.2. Evaluation of the mean length 

As can be seen in ( 6 ) ,  the computation of the mean value of the classical action will 
require a correct evaluation of the second-order correlations as in (l),  but improved 
to second order in dt. In the Markovian case, this is obtained by developing the 
stochastic differentials (3)  up to order dt3”. The same procedure will be used here, 
but with the stochastic differentials involving the A noise ( 5 ) ,  and also for arbitrary 
diffusions. Developing (9, one obtains 

where the endpoints have been chosen so as to prepare for the expectation value, that 
will be taken conditionally in xi ; and straightforwardly: 

(dAXf dAX{), =(dAWi, dAW{,),+ bi,b{,  dt2+Vkbi, ( dAW:, ’ j‘A+d‘ (wk,, - w t I )  ds)  
!A I 

Then, the key, and only further hypothesis, will be that the correlations of the diffusion 
(x;.x:-), for different t’ and t” ,  are assumed to be twice differentiable, i.e. 

I 3 , ~ I 3 , ~ , ( X ~ ~ X ~ ~ ’ ) ,  d ,,(x).bJ, (x ,,,)), 

exist and are continuous for any t ,  t ’ ,  t” all different, so that 

(dw:,, dwjh,,,), = cy,( t ’ ,  t”) dt’ dt”+o(dt’  dt”) 

c!,( t ’ ,  t ” )  = a,.a,,,( w:,,w$,,,),, 

t ’ #  t” (15) 

with 

t ’ #  t” 

= d, ,d , , , (~i ,~{, , ) ,  -d , , (~i ,bi , , ’ ) ,  -d, ,~(b~,,x{,~),  +(bi,,b$,,,),. 

Then, one easily computes 

(dAWk, dAWjh,), = 2 v f  d t +  Ad,vy+- v ~ ’ V k V I v ~  +hVkvi:bk,I+c!, ) dt2+o(dt2)  (16) 

where 

l + h 2  ( 2 

lI:+d‘ dt l  
dt”cy,(t’, t ” )  = C Y ,  d t2+o(dt2)  

(A 
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and also 

(d,w:, [ 'A+df  ( w { , ~ - w ~ ( , )  ds)  = A V !  dt2+o(dt2)  
,A I 

so that finally 

(d,x: d,x',), = 2 4 '  d t +  

vF'VkVIv:J + C Y ,  d t2+o(dt2) .  
1 + A 2  +- 

2 

b~,bJ,,+A(d,v'/ + vFvkb',,,+ v';Vkb\,+V,v:l bk,,) ( 
) 

In the case of constant diffusion field, the length (14) reduces to 

dx: dx: 
d t  

ds, = im,, - +a,  dx:+a(d,m,+V,u,+V,u,) dx: dxJ,- "V'dt+o(dt) 

and takes the following mean value (where identification (9) has been made): 

+fmijcy, d t+o(d t )  

2, =fm,b~b ' ,+a ,b :+qhV, (b~+a ' ) -  7'" 

where 2, is the stochastic Lagrangian (8). 
Before examining the general case, a few remarks can be made. As previously 

noticed, the particular time prescription related to A enters at two stages: in the 
convention for differentials (like dA) ,  and in the definition of the noise w,. But it must 
be stressed that, although both have been used here for computational convenience, 
the first occurence (i.e. in d,) is inessential: the result does not depend on it, and if 
one uses d instead of d, one still obtains Z,,, as is obvious from the following identiy: 

9 = (I," ds,) = ([," ds,). 

Only the second occurence of A plays a role, and results in different breakings of SP 
into the sum of two parts: one giving the stochastic Lagrangian, and the other being 
a noise contribution. To be more explicit, one can also compute the difference in the 
noise correlations for various A and the same process. Using the differentiability (15) 
and 

v, ( v " p )  
dw;, = dwl, + ( A  - p )  ~ dt  +o(d t )  

P 

one obtains quite generally 

which is to be compared with (8), or 

This explicitly shows how different stochastic Lagrangians are generated. In particular, 
this explains why the Markovian m e ,  cy, = 0, leads to a unique stochastic action (the 
one with A = 1) .  The equivalent variational principles of the previous section can now 
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be better understood. They correspond to extremising the same universal function, the 
mean length of the trajectories, but for different diffusion coefficients and with different 
conditions of variation, i.e. while keeping fixed different (infinite) parts related to 
different noises. They thus provide different critical diffusions, which are all related 
to the same Schrodinger equation. Moreover, this shows in a clear way that the 
correlations of the noise need not be specified: the functions c i f  in (15) can be arbitrary. 
They may just be kept fixed during variation. In particular, this is precisely the effect 
of the Markovian property, which amounts to specifying cy f  = 0, and using A = 1. In 
fact, only the integral: 

TA = (I,'' imijcy, ds) 

has to be fixed. By varying A while keeping (17) constant, for the same drift field and 
probability density, one will generate a very large class of diffusions that all correspond 
to the same quantum state, with its Schrodinger evolution. In particular, among 
diffusions with cy, = 0, besides those which will be Markovian for A = 1, those for A # 1 
will constitute other equally acceptable diffusions (concerning the singular A = 0 case, 
let us just remark that it requires an infinite diffusion coefficient to be dealt with 
correctly, and thus does not correspond to a classical limit). One might wonder whether 
such diffusions actually exist, and really build a class within which the variational 
principle can be applied. Indeed, the case of Gaussian processes can easily be worked 
out, and the various equivalent diffusions explicitly built, which are solutions of the 
previous stochastic variational principles. It thus appears that the degeneracy in the 
correspondence between quantum states and stochastic processes can be ultimately 
related to the properties of the noise which characterise the process. 

3.3. Time-dependent covariance 

The previous derivation will hold for any diffusion field (and not only for constant 
ones), if only because of general covariance. This will be naturally exhibited if one 
manages to use covariant objects only. 

As remarked by It8 (1975), Dohrn and Guerra (1978) and Nelson (1989, diffusions 
bear a natural Riemannian structure, with a metric given by the diffusion coefficient 
v. This can, moreover, be extended to include covariance under general time-dependent 
changes of variables (Jaekel 1988). In particular, the following expression generalises 
dx: to a vector up to order dt3'2: 

D,x:=dx:+a '  dt+D,a'dx: d t  (18) 

-a  is a velocity, i.e. under time-dependent changes of coordinates: 

t = f ( i )  f = a i f  X '  = g ' (  i, a) 
g, I '  - -V,g' - g '=a ,g ' ( i , a )  

D , x ~  = g j ' D , Z , i + ~ ( d t ~ ' ~ ) .  
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ax,, (13), is in fact the expression of the tangent vector at x, to the geodesic running 
from x, to x, + dx,. Similarly, the metric is generalised to the following tensor up to 
order dt:  

m 
dt  

m; = I I + f ( a , m ,  -DluJ-DJu,) 

leading to the scalar length 

ds, = 4mzDax)D,x’, 

which gives expression (14). 
As shown in the previous section, one will also need, for evaluating the expectation 

value of the correlations of the noise, to know the latter up to order dt3’2 only. It will 
be convenient to introduce a generalised A-noise $, by 

d;:, = dxi - 6Ls ds=dwf,,-AVJkrjk d t+o(d t )  (20) 

and the two corresponding vectors up to order dt: 

a$:, =d$:,+$lk d$t’,, d$k, 

a,$l,=d,G;,-fI‘J, d,GJ,, d*fi;, 

with the following property of the correlations (resulting from (15)): 

(a$;,, a*$$, ), = ?(,(f’, t ” )  dt‘ dt”+o(dt’  dt”) t ’ >  t” .  (21) 

Equation (21) then implies that Z:, is a tensor: 

Having identified the different tensors, one can choose normal coordinates (such 
that rik = 0 at x,) and compute the required correlations using the same development 
as in the previous section. One then obtains 

( ~ 9 , ~  &f, a x ~ , ) , = 2 N d A t + ( v , 6 : 6 ~ + 2 A D i 6 ~ + a ,  In(v1-fR-t vjc”!,) dAt2+O(dAt2). 

Here, the subscript h attached to the differential d,t refers to the transformation 
properties of the latter, i.e. one must define d,t more precisely as 

dt, = ( t + d, I )  - ( t - d,?) 

up to order dt2, such that it transforms as 

A 0. 

2 
d, t =f d , f + - f d , f 2  + O( d ,, f’) . 

Identifying v with hm/2A, we obtain 

where =Y, is again the stochastic Lagrangian used in section 2, and R is the scalar 
curvature of the metrics: 

R = m k ’ ( v i r  - v,r j, + r ;,,,r; - r m,r ;). 
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This also leads to the covariant action (Q, = 1:' fm,.c"Ys ds): 
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The discussion of the previous section holds here: extremising the same mean 
length of the trajectories (14), on different diffusions (characterised by different 
diffusion coefficients hm/2A ), but with appropriate conditions of variations, i.e. by 
keeping fixed the diffusion coefficient and the correlation (22 )  of the corresponding 
A-noise, leads in all cases to the same and unique Schrodinger equation. A small 
difference is now that the A-noise itself does indeed vary (as can be seen in its 
correlations up to order dt2(16)), but the expression which plays the role of a 
zero-point action, must be kept fixed. In particular, the Markov property corresponds 
to further constraining @A to be kept equal to zero. 

4. Conclusion and outlook 

One result of the scheme developed here is that the correspondence between quantum 
states and stochastic processes suffers from two kinds of degeneracies: firstly, the 
diffusion coefficient can be scaled by an arbitrary time-dependent parameter, provided 
the latter also modifies the value of the time taken for defining a decomposition between 
drift and noise ( 5 ) .  More precisely, the same expressions for the correlations must be 
attributed to a noise whose definition varies with the parameter A. Thus, a change in 
the scale of the diffusion can be compensated for by a shift of the time involved in 
conditional expectation values (and hence by a change in the definition of the noise). 
Secondly, the noise need not be specified completely in order to determine the quantum 
state. While the singular part of its correlations is fixed by the metric of the Lagrangian, 
the regular part (21) can remain arbitrary without affecting the quantum evolution. 
One can regard the quantum state as representing the part of the information lying in 
the stochastic process which is relevant for the evolution of the system. The remaining 
part concerns the noise and is, to some extent, transparent to the Schrodinger equation. 
In fact, this property could be used to characterise pure states: the evolution of mixed 
states is easily recovered by mixing the corresponding diffusion processes (Jaekel and 
Pignon 1984); using the same argument as therein, one can easily see that the correct 
variational principle will be obtained not by keeping the total contribution of the 
A-noise fixed, but by keeping it fixed for each pure component. 

On the whole, the scheme still supports the view of the stochastic representation 
that classical mechanics can be extended to quantum mechanics by maintaining the 
notion of trajectories, and replacing their differentiability (dx - dt )  by a diffusive 
behaviour (dx-dt' '2). In doing so, as in the path integral formalism, the stochastic 
representation of quantum mechanics introduces a new kind of relationship between 
kinematics and dynamics: the diffusion field, which characterises the size of the 
fluctuations of the sample paths, appears to be linked to the metrics defining the kinetic 
part of the Lagrangian (albeit up to an overall scaling time-dependent parameter). But 
the stochastic formalism does not throw much light on this relation. A possibility for 
a dynamical mechanism might be in the curvature term that enters the mean length of 
the trajectories. Associating it with the action of the metrics could provide a basis for 
a complementary variational principle involving the diffusion field and the metrics 
(Guerra and Morato 1983). The stochastic variational principle studied here only 



3510 M T Jaekel 

relates the time-dependent scaling arbitrariness to a choice of time and a related choice 
of a decomposition between drift and noise. This property might make the stochastic 
representation particularly pertinent to problems raised by the notion of time in 
quantum mechanics. For instance, circumstances related to multiple-time observables 
have already been discussed, showing that the path formalism provides a broader 
description than that of states (Aharonov and Albert 1984). Also, if one looks for an 
operational definition of time, such as that given by quantum clocks, there appear 
difficulties to understanding what is meant by differentials with respect to time in the 
Schrodinger equation within the standard operator representation (Peres 1980). The 
description in terms of equivalent diffusions, while preserving its geometric roots to 
the notion of trajectory, might also show sufficient flexibility to agree with the quantum 
requirements. 

The other result that arbitrary noise correlations still lead to the Schrodinger 
evolution, when extended to include mixed states, could provide the basis for a 
stochastic characterisation of pure states. This should be compared with the description 
given by the quantum Langevin equation (Ford et a1 1965), where the general quantum 
regime also corresponds to noise correlations which are not Markovian, and become 
so only in the high temperature limit. The associated quantum process contains, besides 
information on the small system’s evolution, information on the bath which is described 
by the noise correlations. Moreover, a purely stochastic representation of the quantum 
Langevin equation provides a common framework for treating ‘quantum’ and ‘statis- 
tical’ fluctuations on an equal footing (Jaekel 1989). A unified approach might prove 
fruitful for understanding the peculiar character of quantum evolution, as opposed to 
ordinary diffusions. 
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